Structural Design Of Reinforced Concrete Tall Buildings

showing the speed and simplicity of effective design from first principles. This text presents good approximate solutions to complex design problems, such as "Wembley-Arch" type structures, the design of thin-walled structures, and long-span box girder bridges. Other more codebased textbooks concentrate on relatively simple member design, and avoid some of the most interesting design problems because code compliant solutions are complex. Yet these problems can be addressed by relatively manageable techniques. The methods outlined here enable quick, early stage, "ball-park" design solutions to be considered, and are also useful for checking finite element analysis solutions to complex problems. The conventions used in the book are in accordance with the Eurocodes, especially where they provide convenient solutions that can be easily understood by students. Many of the topics, such as composite beam design, are straight applications of Eurocodes, but with the underlying theory fully explained. The techniques are illustrated through a series of worked examples which develop in complexity, with the more advanced questions forming extended exam type questions. A comprehensive range of fully worked tutorial questions are provided at the end of each section for students to practice in preparation for closed book exams. This book presents the results of a Japanese national research project carried out in 1988-1993, usually referred to as the New RC Project. Developing advanced reinforced concrete building structures with high strength and high quality materials under its auspices, the project aimed at promoting construction of highrise reinforced concrete buildings in highly seismic areas such as Japan. The project covered all the aspects of reinforced concrete structures, namely materials, structural elements, structural design, construction, and feasibility studies. In addition to presenting these results, the book includes two chapters giving an elementary explanation of modern analytical techniques, i.e. finite element analysis and earthquake response analysis. Contents: RC Highrise Buildings in Seismic Areas (H Aoyama) The New RC Project (H Hiraishi)New RC Materials (M Abe & H Shiohara)New RC Structural Elements (T Kaminosono)Finite Element Analysis (H Noguchi)Structural Design Principles (M Teshigawara)Earthquake Response Analysis (T Kabeyasawa)Construction of New RC Structures (Y Masuda) Feasibility Studies and Example Buildings (H Fujitani) Readership: Civil, ocean and marine engineers. Reinforced Concrete Design: A Practical Approach, 2E is the only Canadian textbook which covers the design of reinforced concrete structural members in accordance with the CSA Standard A23.3-04 Design of Concrete Structures, including its 2005, 2007, and 2009 amendments, and the National Building Code of Canada 2010. Reinforced Concrete Design: A Practical Approach covers key topics for curriculum of undergraduate reinforced concrete design courses, and it is a useful learning resource for the students and a practical reference for design engineers. Since its original release in 2005 the book has been well received by readers from Canadian universities, colleges, and design offices. The authors have been commended for a simple and practical approach to the subject by students and course instructors. The book contains numerous design examples solved in a step-by-step format. The second edition is going to be available exclusively in hard cover version, and colours have been used to embellish the content and illustrations. This edition contains a new chapter on the design of twoway slabs and numerous revisions of the original manuscript. Design of two-way slabs is a challenging topic for engineering students and young engineers. The authors have made an effort to give a practical design perspective to this topic, and have focused on analysis and design approaches that are widely used in structural engineering practice. The topics include design of two-way slabs for flexure, shear, and deflection control. Comprehensive revisions were made to Chapter 4 to reflect the changes contained in the 2009 amendment to CSA A23.3-04. Chapters 6 and 7 have been revised to correct an oversight related to the transverse reinforcement spacing requirements in the previous edition of the book. Chapter 8 includes a new design example on slender columns and a few additional problems. Several errors and omissions (both text and illustrations) have also been corrected. More than 300 pages of the original book have been revised in this edition. Several supplements are included on the book web site. Readers will get time-limited access to the new column design software BPA COLUMN, which can generate column interaction diagrams for rectangular and cicrcular columns of variable dimensions and reinforcement amount. Additional supplements include spreadsheets related to foundation design and column load take down, and a few Power Point presentations showcasing reinforced concrete structures under construction and in completed form. Instructors will have an access to additional web site, which contains electronic version of the Instructor's Solution Manual with complete solutions to the end-of-chapter problems, and Power Point presentations containing all illustrations from the book. The book is a collaborative effort between an academic and a practising engineer and reflects their unique perspectives on the subject. Svetlana Brzev, Ph.D., P.Eng. is a faculty at the Civil Engineering Department of the British Columbia Institute of Technology, Burnaby, BC. She has over 25 years of combined teaching, research, and consulting experience related to structural design and rehabilitation of concrete and masonry structures, including buildings, municipal, and industrial facilities. John Pao, MEng, PEng, Struct. Eng, is the President of Bogdonov Pao Associates Ltd. of Vancouver, BC, and BPA Group of Companies with offices in Seattle and Los Angeles. Mr. Pao has extensive consulting experience related to design of reinforced concrete buildings, including high-rise residential and office buildings, shopping centers, parking garages, and institutional

This enlightening textbook for undergraduates on civil engineering degree courses explains structural design from its mechanical principles,

This book is focused on the theoretical and practical design of reinforced concrete beams, columns and frame structures. It is based on an analytical approach of designing normal reinforced concrete structural elements that are compatible with most international design rules, including for instance the European design rules – Eurocode 2 – for reinforced concrete structures. The book tries to distinguish between what belongs to the structural design philosophy of such structural elements (related to strength of materials arguments) and what belongs to the design rule aspects associated with specific characteristic data (for the material or loading parameters). A previous book, entitled Reinforced Concrete Beams, Columns and Frames – Mechanics and Design, deals with the fundamental aspects of the mechanics and design of reinforced concrete in general, both related to the Serviceability Limit State (SLS) and the Ultimate Limit State (ULS), whereas the current book deals with more advanced ULS aspects, along with instability and second-order analysis aspects. Some recent research results including the use of non-local mechanics are also presented. This book is aimed at Masters-level students, engineers, researchers and teachers in the field of reinforced concrete design. Most of the books in this area are very practical or code-oriented, whereas this book is more theoretically based, using rigorous mathematics and mechanics tools. Contents 1. Advanced Design at Ultimate Limit State (ULS). 2. Slender Compression Members – Mechanics and Design. 3. Approximate Analysis Methods. Appendix 1. Cardano's Method. Appendix 2. Steel Reinforcement Table. About the Authors Jostein Hellesland has been Professor of Structural Mechanics at the University of Oslo, Norway since January 1988. His contribution to the field of stability has been recognized and magnified by many high-quality papers in famous international journals such as Engineering Structures, Thin-Walled Structures, Journal of Constructional Steel Research and Journal of Structural Engineering. Noël Challamel is Professor in Civil Engineering at UBS, University of South Brittany in France and chairman of the EMI-ASCE Stability committee. His contributions mainly concern the dynamics, stability and inelastic behavior of structural components, with special emphasis on Continuum Damage Mechanics (more than 70 publications in International peer-reviewed journals). Charles Casandjian was formerly Associate Professor at INSA (French National Institute of Applied Sciences), Rennes, France and the chairman of the course on reinforced concrete design. He has published work on the mechanics of concrete and is also involved in creating a web experience for teaching reinforced concrete design – BA-CORTEX. Christophe Lanos is Professor in Civil Engineering at the University of Rennes 1 in France. He has mainly published work on the mechanics of concrete, as well as other related subjects. He is also involved in creating a web experience for teaching reinforced concrete design – BA-CORTEX.

Sets out basic theory for the behavior of reinforced concrete structural elements and structures in considerable depth. Emphasizes behavior at the ultimate load, and, in particular, aspects of the seismic design of reinforced concrete structures. Based on American practice, but also examines European practice.

Designed primarily as a text for undergraduate students of Civil Engineering for their first course on Limit State Design of Reinforced Concrete, this compact and well-organized text covers all the fundamental concepts in a highly readable style. The text conforms to the provision of the latest revision of Indian Code of Practice for Plain and Reinforced Concrete, IS: 456 (2000). First six chapters deal with fundamentals of limit states design of reinforced concrete. The objective of last two chapters (including design aids in appendix) is to initiate the readers in practical design of concrete structures. The text gives detailed discussion of basic concepts, behaviour of the various structural components under loads, and development of fundamental expressions for analysis and design. It also presents efficient and systematic procedures for solving design problems. In addition to the discussion of basis for design calculations, a large number of worked-out practical design examples based on the current design practices have been included to illustrate the basic principles of reinforced concrete design. Besides students, practising engineers would find this text extremely useful.

The most up to date structural concrete text, with the latest ACI revisions Structural Concrete is the bestselling text on concrete structural design and analysis, providing the latest information and clear explanation in an easy to understand style. Newly updated to reflect the latest ACI 318-14 code, this sixth edition emphasizes a conceptual understanding of the subject, and builds the student's body of knowledge by presenting design methods alongside relevant standards and code. Numerous examples and practice problems help readers grasp the real-world application of the industry's best practices, with explanations and insight on the extensive ACI revision. Each chapter features examples using SI units and US-SI conversion factors, and SI unit design tables are included for reference. Exceptional weather-resistance and stability make concrete a preferred construction material for most parts of the world. For civil and structural engineering applications, rebar and steel beams are generally added during casting to provide additional support. Pre-cast concrete is becoming increasingly common, allowing better quality control, the use of special admixtures, and the production of innovative shapes that would be too complex to construct on site. This book provides complete guidance toward all aspects of reinforced concrete design, including the ACI revisions that address these new practices. Review the properties of reinforced concrete, with models for shrink and creep Understand shear, diagonal tension, axial loading, and torsion Learn planning considerations for reinforced beams and strut and tie Design retaining walls, footings, slender columns, stairs, and more The American Concrete Institute updates structural concrete code approximately every three years, and it's critical that students learn the most recent standards and best practices. Structural Concrete provides the most up to date information, with intuitive explanation and detailed guidance.

For courses in architecture and civil engineering. Reinforced Concrete: Mechanics and Design uses the theory of reinforced concrete design to teach readers the basic scientific and artistic principles of civil engineering. The text takes a topic often introduced at the advanced level and makes it accessible to all audiences by building a foundation with core engineering concepts. The Seventh Edition is up-to-date with the latest Building Code for Structural Concrete, giving readers access to accurate information that can be applied outside of the classroom. Readers are able to apply complicated engineering concepts to real world scenarios with in-text examples and practice problems in each chapter. With explanatory features throughout, the Seventh Edition makes the reinforced concrete design a theory all engineers can learn from.

Third Printing, incorporating errata, Supplement 1, and expanded commentary, 2013.

This established textbook sets out the principles of limit state design and of its application to reinforced and prestressed concrete members and structures. It will appeal both to students and design engineers. The fourth edition incorporates information on the recently introduced British Standard Code of practice for water retaining structures BS8007. The authors have also taken the opportunity of making minor revisions, generally based on the recommendations of BS8110.

An introduction to the correct, efficient, and accurate design of reinforced concrete buildings. The material is presented in logical order as the structural design would be prepared in a design office. Necessary deviations are made to explain basic concepts before they are used in design, and the book covers structural investigation, design, properties of concrete, properties of reinforcing steel and more. English units are used throughout with metric conversions in the appendixes. 311 figures are featured along with 6 photographs.

This book focuses on the analysis and design of reinforced concrete structures in conformity with CSA A23.3-04 Canadian standard. Such members are often encountered in engineering practice, particularly in buildings. Using an original approach, the authors present the subject matter as clearly and effectively as possible. Each aspect is carefully illustrated and is the subject of a thorough theoretical development. This is followed by a step-by-step procedure for both design and verification, along with many fully developped numerical applications. Emphasizing a conceptual understanding of concrete design and analysis, this revised and updated edition builds the student?s understanding by presenting design methods in an easy to understand manner supported with the use of numerous examples and problems. Written in intuitive, easy—to—understand language, it includes SI unit examples in all chapters, equivalent conversion factors from US customary to SI throughout the book, and SI unit design tables. In addition, the coverage has been completely updated to reflect the latest ACI 318–11 code.

This book will provide comprehensive, practical knowledge for the design of reinforced concrete buildings. The approach will be unique as it will focus primarily on the design of various structures and structural elements as done in design offices with an emphasis on compliance with the relevant codes. It will give an overview of the integrated design of buildings and explain the design of various elements such as slabs, beams, columns, walls, and footings. It will be written in easy-to-use format and refer to all the latest relevant American codes of practice (IBC and ASCE) at every stage. The book will compel users to think critically to enhance their intuitive design capabilities.

The Most Complete FRP Reinforced Concrete Structure Analysis and Design Guide This comprehensive reference provides proven design procedures for the use of fiber-reinforced polymer (FRP) materials for reinforcement, prestressing, and strengthening of reinforced concrete structures. The characteristics of FRP composite materials as well as the latest manufacturing techniques are discussed. Detailed illustrations and tables, design equations, end-of-chapter problems, and real-world case studies are included in this authoritative resource. Analysis and Design of FRP Reinforced Concrete Structures covers: Material characteristics of FRP bars History and uses of FRP technology Design of RC structures reinforced with FRP bars Design philosophy for FRP external strengthening systems Durability-based design approach for external FRP strengthening of RC beams

The updated version of this classic text explains the principles involved in the design of concrete structure buildings and summarizes the primary requirements of current building codes. Developed for self-study use as well as classroom instruction, this book requires little mathematical or engineering expertise. Example calculations are given for the practical design of contemporary structures.

Concrete is one of the most used materials in the construction industry. In structural systems, the combination of concrete and steel reinforcement bars gives rise to reinforced concrete (RC), which is widely applied in the civil

engineering field due to its adequate mechanical strength, durability, and fire resistance. Steel-rebar reinforced structures are subjected to structural deterioration when subjected to extreme loadings such as earthquake, fire, impact loadings and cyclic loading, consequently reducing the expected life and performance of structures. To enhance the structural performance, the RC structures are usually retrofitted or strengthened. This book reviews design, performance and applications of reinforced concrete.

Everything civil and structural engineers in California need to prepare for the seismic design topics of the Special Civil Engineering Exam and California Structural Engineering Exam. This guide emphasizes methods that lead to the quickest and simplest solution to any problem.

The sixth edition of this comprehensive textbook provides the same philosophical approach that has gained wide acceptance since the first edition was published in 1965. The strength and behavior of concrete elements are treated with the primary objective of explaining and justifying the rules and formulas of the ACI Building Code. The treatment is incorporated into the chapters in such a way that the reader may study the concepts in a logical sequence in detail or merely accept a qualitative explanation and proceed directly to the design process using the ACI Code. Principle of Reinforced Concrete introduces the main properties of structural concrete and its mechanical behavior under various conditions as well as all aspects of the combined function of reinforcement and concrete. Based on the experimental investigation, the variation regularity of mechanical behavior, working mechanism, and calculation method are presented for the structural member under various internal forces. After examining the basic principle and analysis method of reinforced concrete, the book covers some extreme circumstances, including fatigue load, earthquake, explosion, high temperature (fire accident), and durability damage, and the special responses and analysis methods of its member under these conditions. This work is valuable as a textbook for post-graduates, and can be used as a reference for university teachers and under-graduates in the structural engineering field. It is also useful for structural engineers engaged in scientific research, design, or construction. Focuses on the principles of reinforced concrete, providing professional and academic readers with a single volume reference Experimental data enables readers to make full use of the theory presented The mechanical behavior of both concrete and reinforcement materials, plus the combined function of both are covered, enabling readers to understand the behaviors of reinforced concrete structures and their members Covers behavior of the materials and members under normal and extreme conditions

The 14th edition of the classic text, Design of Concrete Structures, is completely revised using the newly released 2008 ACI (American Concrete Institute) Code. This new edition has the same dual objectives as the previous editions; first to establish a firm understanding of the behavior of structural concrete, then to develop proficiency in the methods used in current design practice. Design of Concrete Structures covers the behavior and design aspects of concrete and provides updated examples and homework problems. New material on slender columns, seismic design, anchorage using headed deformed bars, and reinforcing slabs for shear using headed studs has been added. The notation has been thouroughly updated to match changes in the ACI Code. The text also presents the basic mechanics of structural concrete and methods for the design of individual members for bending, shear, torsion, and axial force, and provides detail in the various types of structural systems applications, including an extensive presentation of slabs, footings, foundations, and retaining walls.

The latest edition of this well-known book makes available to structural design engineers a wealth of practical advice on effective design of concrete structures. It covers the complete range of concrete elements and includes numerous data sheets, charts and examples to help the designer. It is fully updated in line with the relevant British Standards and Codes of Practice.

Elastic, Plastic and Yield Design of Reinforced Structures presents a whole set of new results which have been published by the authors over the last 30 years in the field of continuum solid mechanics applied to the analysis and design of reinforced civil engineering structures. The focus is on the development and application of up-scaling/homogenization methods in the design of such composite structures, with a special emphasis on the plastic behavior and ultimate strength of materials. The specificity of the book is highlighted by at least two completely innovative concepts which lie at the very heart of the book's originality: the elaboration of a fully comprehensive homogenization-based method for the design of reinforced structures (and not only materials), through the study of macroscopic behavior, and the development of a multiphase model for materials reinforced by linear inclusions, which considerably extends the range of applicability of the classical homogenization procedure. Sums up almost thirty years of original research in the field of mechanics applied to the analysis and design of reinforced civil engineering structures Focuses on the application of upscaling/homogenization methods to the design of civil engineering structures Highlights the elaboration of a fully comprehensive homogenization-based method for the design of reinforced structures (and not only materials), through the concept of macroscopic behavior Features development of a multiphase model for materials reinforced by linear inclusions, which considerably extends the range of applicability of the classical homogenization procedure.

This new edition of a highly practical text gives a detailed presentation of the design of common reinforced concrete structures to limit state theory in accordance with BS 8110.

Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product. A fully revised guide to the design and analysis of reinforced concrete structures according to the 2014 edition of ACI 318 This practical resource offers concise explanations of reinforced concrete design principles and teaches safe and cost-effective engineering and construction techniques. Reinforced Concrete Structures: Analysis and Design, Second Edition, has been thoroughly updated to reflect the latest requirements in both the 2014 ACI 318 structural concrete code and the 2015 International Building Code®. Examples, procedures, and flowcharts illustrate compliance with each provision. This comprehensive guide features new in-depth coverage of ACI earthquake design requirements. SI units are now included throughout all of the chapters. Reinforced Concrete Structures: Analysis and Design, Second Edition, covers: Material properties of concrete and reinforcing steel Publisher Description

The best-selling Reinforced Concrete Design provides a straightforward and practical introduction to the principles and methods used in the design of reinforced and prestressed concrete structures. The book contains many worked examples to illustrate the various aspects of design that are presented in the text. The seventh edition of the text has been fully revised and updated to reflect the interpretation and use of Eurocode 2 since its introduction. Students and practitioners, both in the UK and elsewhere in the world where Eurocode 2 has been adopted, will find it a concise guide both to the basic theory and to appropriate design procedures. Design charts, tables and formulae are

included as design aids and, for ease of reference, an appendix contains a summary of important design information. Features of the seventh edition are: • Completely revised to reflect recent experience of the usage of Eurocode 2 since its introduction in 2004 and its adoption in the UK as a design standard in 2010 • Further examples of the theory put into practice • A new chapter on water retaining structures in accordance with Eurocode 2, Part 3 • New sections on, for example, design processes including conceptual design, deep beams and an expanded treatment of designing for fire resistance

"Introduction -- Flexural analysis of beams -- Strength analysis of beams according to ACI code -- Design of rectangular beams and one-way slabs -- Analysis and design of T beams and doubly reinforced beams -- Serviceability -- Bond, development lengths, and splices -- Shear and diagonal tension -- Introduction to columns -- Design of short columns subject to axial load and bending -- Slender columns -- Footings -- Retaining walls -- Continuous reinforced concrete structures -- Torsion -- Two-way slabs, direct design method -- Two-way slabs, equivalent frame method -- Walls -- Prestressed concrete -- Formwork -- Reinforced concrete building systems." -- OhioLink Library Catalog.

Design of Reinforced Concrete, 10th Edition by Jack McCormac and Russell Brown, introduces the fundamentals of reinforced concrete design in a clear and comprehensive manner and grounded in the basic principles of mechanics of solids. Students build on their understanding of basic mechanics to learn new concepts such as compressive stress and strain in concrete, while applying current ACI Code.

This book provides an extensive coverage of the design of reinforced concrete structures in accordance with the current Indian code of practice (IS 456: 2000). As some of the Indian code provisions are outdated, the American code provisions are provided, wherever necessary. In addition, an attempt is made to integrate the provisions of IS 456 with earthquake code (IS 13920), as more than 60% of India falls under moderate or severe earthquake zones. The text is based on the limit state approach to design and covers areas such as the properties of concrete, design of various structural elements such as compression and tension members, beams & slabs, and design for flexure, shear torsion, uni-axial and biaxial bending and interaction of these forces. Each chapter features solved examples, review questions, and practice problems as well as ample illustrations that supplement the text. An exhaustive list of references as well as appendices on strut-and-tie-method, properties of soils, and practical tips add value to the rich contents of book.

Encouraging creative uses of reinforced concrete, Principles of Reinforced Concrete Design draws a clear distinction between fundamentals and professional consensus. This text presents a mixture of fundamentals along with practical methods. It provides the fundamental concepts required for designing reinforced concrete (RC) structures, emphasizing principles based on mechanics, experience, and experimentation, while encouraging practitioners to consult their local building codes. The book presents design choices that fall in line with the boundaries defined by professional consensus (building codes), and provides reference material outlining the design criteria contained in building codes. It includes applications for both building and bridge structural design, and it is applicable worldwide, as it is not dependent upon any particular codes. Contains concise coverage that can be taught in one semester Underscores the fundamental principles of behavior Provides students with an understanding of the principles upon which codes are based Assists in navigating the labyrinth of ever-changing codes Fosters an inherent understanding of design The text also provides a brief history of reinforced concrete. While the initial attraction for using reinforced concrete in building construction has been attributed to its fire resistance, its increase in popularity was also due to the creativity of engineers who kept extending its limits of application. Along with height achievement, reinforced concrete gained momentum by providing convenience, plasticity, and low-cost economic appeal. Principles of Reinforced Concrete Design provides undergraduate students with the fundamentals of mechanics and direct observation, as well as the concepts required to design reinforced concrete (RC) structures, and applies to both building and bridge structural design.

A PRACTICAL GUIDE TO REINFORCED CONCRETE STRUCTURE ANALYSIS AND DESIGN Reinforced Concrete Structures explains the underlying principles of reinforced concrete design and covers the analysis, design, and detailing requirements in the 2008 American Concrete Institute (ACI) Building Code Requirements for Structural Concrete and Commentary and the 2009 International Code Council (ICC) International Building Code (IBC). This authoritative resource discusses reinforced concrete members and provides techniques for sizing the cross section, calculating the required amount of reinforcement, and detailing the reinforcement. Design procedures and flowcharts guide you through code requirements, and worked-out examples demonstrate the proper application of the design provisions. COVERAGE INCLUDES: Mechanics of reinforced concrete Material properties of concrete and reinforcing steel Considerations for analysis and design of reinforced concrete structures Requirements for strength and serviceability Principles of the strength design method Design and detailing requirements for beams, one-way slabs, two-way slabs, columns, walls, and foundations

This textbook describes the basic mechanical features of concrete and explains the main resistant mechanisms activated in the reinforced concrete structures and foundations when subjected to centred and eccentric axial force, bending moment, shear, torsion and prestressing. It presents a complete set of limit-state design criteria of the modern theory of RC incorporating principles and rules of the final version of the official Eurocode 2. This textbook examines methodological more than notional aspects of the presented topics, focusing on the verifications of assumptions, the rigorousness of the analysis and the consequent degree of reliability of results. Each chapter develops an organic topic, which is eventually illustrated by examples in each final paragraph containing the relative numerical applications. These practical end-of-chapter appendices and intuitive flow-charts ensure a smooth learning experience. The book stands as an ideal learning resource for students of structural design and analysis courses in civil engineering, building construction and architecture, as well as a valuable reference for concrete structural design professionals in practice.

Designed primarily as a text for the undergraduate students of civil engineering, this compact and well-organized text presents all the basic topics of reinforced concrete design in a comprehensive manner. The text conforms to the limit states design method as given in the latest revision of Indian Code of Practice for Plain and Reinforced Concrete, IS: 456 (2000). This book covers the applications of design concepts and provides a wealth of state-of-the-art information on design aspects of wide variety of reinforced concrete structures. However, the emphasis is on modern design approach. The text attempts to: • Present simple, efficient and systematic procedures for evolving design of concrete structures. • Make available a large amount of field tested practical data in the appendices. • Provide time saving analysis and design aids in the form of tables and charts. • Cover a large number of worked-out practical design examples and problems in each chapter. • Emphasize on development of structural sense needed for proper detailing of steel for integrated action in various parts of the structure. Besides students, practicing engineers and architects would find this text extremely useful.

Structure for Architects: A Case Study in Steel, Wood, and Reinforced Concrete Design is a sequel to the authors' first text, Structure for Architects: A Primer, emphasizing the conceptual understanding of structural design in simple language and terms. This book focuses on structural principles applied to the design of typical structural members—a beam, a girder, and a column—in a diagrammatic frame building. Through the application of a single Case Study across three key materials, the book illustrates the theory, principles, and process of structural design. The Case Study progresses step-by-step for each material, from determining tributary areas and loads through a member's selection and design. The book addresses the frequent disparity between the way architects and engineers perceive and process information, with engineers focusing on technical aspects and architects focusing on visual concepts. Structure for Architects: A Case Study in Steel, Wood, and Reinforced Concrete Design presents readers with an understanding of fundamental engineering principles through a uniquely thematic Case Study. Focusing on the conceptual understanding of structural design, this book will be of interest to architecture students and professionals looking to understand the application of structural principles in relation to steel, wood, and concrete design.

Copyright: 8c5315bce619d1cce129a2b0a8c5703f